Quiz Policies

Eligibility
The NCSF online quizzes are open to any currently certified fitness professional, 18 years or older.

Deadlines
Course completion deadlines correspond with the NCSF Certified Professionals certification expiration date. Students can obtain their expiration dates by reviewing either their certification diploma or certification ID card.

Cancellation/Refund
All NCSF continued education course studies are non-refundable.

General Quiz Rules
- You may not have your quiz back after sending it in.
- Individuals can only take a specific quiz once for continued education units.
- Impersonation of another candidate will result in disqualification from the program without refund.

Disqualification
If disqualified for any of the above-mentioned reasons you may appeal the decision in writing within two weeks of the disqualification date.

Reporting Policy
You will receive your scores within 4 weeks following the quiz. If you do not receive the results after 4 weeks please contact the NCSF Certifying Agency.

Re-testing Procedure
Students who do not successfully pass an online quiz have the option of re-taking. The fees associated with this procedure total $15 (U.S) per request. There are no limits as to the number of times a student may re-test.

Special Needs
If special needs are required to take the quiz please contact the NCSF so that appropriate measures can be taken for your consideration.
What Do I Mail Back to the NCSF?
Students are required to submit the quiz answer form.

What do I Need to Score on the Quiz?
In order to gain the .5 NCSF continued education units students need to score 80% (8 out of 10) or greater on the CEU quiz.

Where Do I Mail My Quiz Answer Form?
You will mail your completed answer form to:

NCSF
Attn: Dept. of Continuing Education
5915 Ponce de Leon Blvd., Suite 60
Coral Gables, FL 33146

How Many CEUs Will I Gain?
Professionals who successfully complete the any continuing education quiz will gain .5 NCSF CEUs per quiz.

How Much does each quiz cost?
Each quiz costs the student $15.00.

What Will I Receive When The Course Is Completed?
Students who successfully pass any of the NCSF online quizzes will receive their exam scores, and a confirmation letter.

How Many Times Can I Take The Quizzes For CEUs?
Individuals can take each NCSF quiz once for continuing education credits.
Increasing interest in personal training has focused on training for sports performance. More participants in recreational and organized sports are recognizing the importance of conditioning for competitiveness and injury prevention. Personal trainers can take advantage of this growing market-interest by becoming more proficient in the techniques that can be used to enhance speed, power, quickness, and specific movement economy. Immediate limitations though, stand out in personal training for these goals, compared to traditional strength and conditioning programming due to the limited contact time. Strength and conditioning programming is usually developed in a 4-7 hour contact framework, whereas most personal trainers must develop similar outcomes in half of that time.

For this reason, personal trainers should look for the optimal training techniques and specific criteria that support efficient outcome. Some classic observations should come to the forefront when focusing physical training on sports performance. Firstly, the best sports conditioning program is one that prevents injury and allows the athlete maximal playing time. Million dollar athletes are not worth a dime sitting on the sidelines due to injury. Secondly, muscle strength-balance and neuromuscular efficiency (economy of movement) are far more important outcomes than improvements in measurable absolute strength. In no sport does one slowly squat to the ground with hundreds of pounds on their shoulders, nor does any sport require an athlete to lie on the ground and press a heavy load off their chest in a controlled manner. Training for sport should advance the participants’ capacity in the specific energy system used in the sport, enhance movement proficiency at the velocities experienced in the sport, focus on prevention of the common injuries of the sport, and optimize the performance components albeit power, speed, quickness, etc…used most often in the sport.

In most sports, speed is a defining factor in performance outcomes. What many fail to realize is strength does not make you fast. Strength enhances power and power makes you fast. In comparative studies, Olympic lifts correlate with higher vertical jump, and consequently vertical jump correlates with speed. When power training using the Olympic lifts (Cleans, Jerks, Snatches) was compared to strength training using the traditional power lifts, (Bench, Squat, Deadlifts) for outcomes on combine-related tests (bench press, squat, vertical jump, 40-yard dash, vertical power) for the sport of football, the importance of Olympic-based power training identified significant relevance. Although both groups saw statistically significant improvements in 1RM squat, the Olympic lift group was observed to have a significantly greater improvement in vertical jump. Additionally, the Olympic lift group experienced a two-fold greater improvement in 40-yard sprint time. The training though, showed no significant differences between the other measured indices.

The above findings suggest that power training is invaluable in improving jump and speed performance but should not be the only training employed. This fact is supported by additional research that compared power training alone with a regimen of strength and power training. When twenty-six recreationally trained male subjects
performing power training only (jump squats) were compared to a group engaging in strength-power training (jump squat and heavy back squats) at equal training volumes for 12 weeks, the Power-only group significantly increased peak power at the lowest loads, whereas the Strength-Power group significantly increased peak power output across all loading conditions. Similarly, peak jump height was significantly increased by the Power group at the lighter loads (20-40 kg) and the Strength-Power group again improved at all loads (20-80 kg). Interestingly, both were comparable in peak power and maximal jump height at bodyweight, which suggests training decisions must reflect the resistive demands of the sport. Training with light load jumps (10% body weight) resulted in increased movement velocity capabilities as velocity specific changes in muscle contractions play an important role in power adaptations. Whereas a football player requires added loading to the ground with a heavy load off their chest and press a heavy weight to their shoulders, nor does any sport require an athlete to lie on the ground with their arms extended. When strength sets are super-setted with power sets each movement. Essentially activities that should reflect the speed and difficulty of fitness activities the exercise order should be considered for each movement. Essential activities that should be performed first, unless a specific risk is involved. For instance, Olympic lifts are generally performed at the start of the exercise bout. Likewise, loaded jumps and body weight jumps supersede strength exercises when performed for maximal velocity and peak power. Strength exercises should be completed after power as they cannibalize power output. In a research study, when bench press was performed (3 sets of 10 repetitions, 65% 1RM) before bench throws using 40 kg of resistance, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. When programming power into workouts that are combined with strength and fitness activities the exercise order should reflect the speed and difficulty of each movement. Essential activities that generate the highest power outputs should be performed first, unless a specific risk is involved. For instance, Olympic lifts are generally performed at the start of the exercise bout. Likewise, loaded jumps and body weight jumps supersede strength exercises when performed for maximal velocity and peak power. Strength exercises should be completed after power as they cannibalize power output. In a research study, when bench press was performed (3 sets of 10 repetitions, 65% 1RM) before bench throws using 40 kg of resistance, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. In the study, when between-exercise rest was increased to seven minutes, power output remained suppressed from pre-test values. When strength sets are super-setted with power sets using contrast training the outcome is beneficial for power output rather than detrimental. A contrast set uses a heavy strength movement followed immediately by a power exercise using the same movement. The back squat...
performed for 6 repetitions immediately contrasted with 6 repetitions of medicine ball squat jumps is an example of this type of training. A study comparing bench throws on a Smith machine found that when athletes performed 6 repetitions of bench press (65% 1RM) before six maximal bench throws, post-test power was higher than the group that performed subsequent sets of bench throws-only. The power measure was 4.5% higher in post-test measures when using the contrast sets compared to the power-only exercises. This response is likely attributed to acute neural/mechanical adjustments associated with the pre-power strength sets.

The correlation between power output measures and movement speed and jump height suggest that training for sports requires velocity specific programming to improve the neural system adaptation. A key component is stimulating the optimal recruitment patterns and maximizing the neural mechanisms that enhance power output. Strength training certainly serves as an important complement, but when used independently will not provide the same outcome in performance that training for power will. When introducing power exercises into a personal training program, consistent program principles apply. Exercises should match the participant’s capabilities and be consistent with the program’s training phase. Strength and endurance preparation cycles should precede power programming to ensure the participant can safely manage the training. This is particularly true in managing the eccentric phase of the movements. Flexibility should also be carefully considered as many movements ballistically force greater movement range. Skill acquisition consistent with any motor learning model should emphasize form and technique before greater stress is placed on the movement. Introductory, body weight plyometrics are often a good starting point. Loading should be thoughtfully progressed and movement technique should be heavily scrutinized as progressions are added.

Power training can be fun, add a competitive feel to training, and dramatically enhance results when programmed properly. Premeditated phases of training can be used to gradually increase the demands on the tissue. Velocity specific movements are a very important component to the training, so emphasis on movement speed should be preferred over heavy resistance. Although optimal training load ranges occur between 50-60% 1RM it may be prudent to work up to such levels even if an individual is “strong” at the strength lifts. It is important to remember, higher velocity training compounds the resistance used, equating higher forces to manage in the end. Therefore mental focus, appropriate preparation, and client appropriate activities are all key factors when adding power training for sports specific programming.
1. The primary obstacle for most personal trainers when training clients for optimal gains in strength and conditioning is ____________
 a. Clients are too weak
 b. The duration of the individual training session
 c. Lack of enough contact time
 d. The availability of the appropriate equipment

2. The primary goal of any strength and condition program should be to:
 a. Increase muscle mass
 b. Increase core strength
 c. Decrease risk of injury
 d. Increase hip extensor flexibility

3. Which of the following should be goals of a well planned strength and conditioning program?
 a. Enhanced capacity of the energy system used most often in the sport
 b. Improved movement efficiency at the speed most often used in the sport
 c. Prevention of the most common injuries resulting from the sport
 d. All of the above

4. Although strength may indirectly increase speed, the primary contributor to increased speed of performance is ____________
 a. Power
 b. Agility
 c. Balance
 d. Coordination

5. Optimal strength training completed at low velocity requires a resistance in the range of:
 a. 55-65% 1RM
 b. 65-75% 1RM
 c. 80-90% 1RM
 d. 110% 1RM

6. Due primarily to the fact that increases in power will result from an increased speed of movement, optimal power training uses resistance ranges of:
 a. 25-40% 1RM
 b. 45-60% 1RM
 c. 65-75% 1RM
 d. 90-95% 1RM

7. Select the correct reason why split squat jump peak power is lower (30-60% 1RM) than the squat jump peak power (50-70% 1RM).
 a. The mechanically disadvantaged start position of the split squat
 b. The mechanically disadvantaged start position of the squat
 c. The increased muscle mass required for hip and knee flexion/extension
 d. None of the above are correct

8. When designing a program to enhance power, exercise order is important. Unless specific risk is involved, the exercises requiring the highest power output should be performed ____________
 a. Last
 b. In the middle
 c. First
 d. At any point during the routine

9. The use of a heavy strength movement followed immediately by a power exercise using a similar movement is referred to as a ____________.
 a. Contrast
 b. Split
 c. Pyramid
 d. Drop

10. When introducing power training into a personal training program, which of the following considerations are necessary?
 a. The exercise matches the skills and abilities of the individual
 b. The exercise mimics the activity/sport played by the individual
 c. Exercise order is appropriately integrated into the prescription
 d. All of the above are correct
Quiz Answer Form

First Name __________________________ **Last Name** __________________________ **M.I.** _______

Title __

Address __ **Apt.** _______

Address __

City __________________________ **State** __________________________ **Zip** _______

Country __________________________ **Postal Code** __________

Certification No. __________________________ **Certification Exp.** ___/___/___

Membership No. __________________________ **Membership Exp.** ___/___/___

<table>
<thead>
<tr>
<th>Quiz Name</th>
<th>Member Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$15</td>
<td></td>
</tr>
</tbody>
</table>

☐ Discover ☐ Visa ☐ Mastercard ☐ Amex ☐ Check/Money Order

Account No. __________________________ Exp. Date _______

Signature __________________________ Date _______

Quiz Answers

Fill in each blank with the correct choice on the answer sheet. To receive 0.5 CEUs, you must answer 8 of the 10 questions correctly.

1. _____ 6. _____
2. _____ 7. _____
3. _____ 8. _____
4. _____ 9. _____
5. _____ 10. _____

Please mail this Quiz answer form along with the proper enclosed payment to:

NCSF
5915 Ponce de Leon Blvd., Suite 60
Coral Gables, FL 33146

Questions? 800-772-NCSF