Quiz Policies

Eligibility
The NCSF online quizzes are open to any currently certified fitness professional, 18 years or older.

Deadlines
Course completion deadlines correspond with the NCSF Certified Professionals certification expiration date. Students can obtain their expiration dates by reviewing either their certification diploma or certification ID card.

Cancellation/Refund
All NCSF continued education course studies are non-refundable.

General Quiz Rules
- You may not have your quiz back after sending it in.
- Individuals can only take a specific quiz once for continued education units.
- Impersonation of another candidate will result in disqualification from the program without refund.

Disqualification
If disqualified for any of the above-mentioned reasons you may appeal the decision in writing within two weeks of the disqualification date.

Reporting Policy
You will receive your scores within 4 weeks following the quiz. If you do not receive the results after 4 weeks please contact the NCSF Certifying Agency.

Re-testing Procedure
Students who do not successfully pass an online quiz have the option of re-taking. The fees associated with this procedure total $15 (U.S) per request. There are no limits as to the number of times a student may re-test.

Special Needs
If special needs are required to take the quiz please contact the NCSF so that appropriate measures can be taken for your consideration.
Quiz Rules

What Do I Mail Back to the NCSF?
Students are required to submit the quiz answer form.

What do I Need to Score on the Quiz?
In order to gain the .5 NCSF continued education units students need to score 80% (8 out of 10) or greater on the CEU quiz.

Where Do I Mail My Quiz Answer Form?
You will mail your completed answer form to:

NCSF
Attn: Dept. of Continuing Education
5915 Ponce de Leon Blvd., Suite 60
Coral Gables, FL 33146

How Many CEUs Will I Gain?
Professionals who successfully complete the any continuing education quiz will gain .5 NCSF CEUs per quiz.

How Much does each quiz cost?
Each quiz costs the student $15.00.

What Will I Receive When The Course Is Completed?
Students who successfully pass any of the NCSF online quizzes will receive their exam scores, and a confirmation letter.

How Many Times Can I Take The Quizzes For CEUs?
Individuals can take each NCSF quiz once for continuing education credits.
Diet-Induced Thermogenesis (DIT) is the production of heat that occurs after eating - which contributes to the body’s resting metabolic rate. DIT is also called the thermic effect of food. It activates sympathetic nervous system activity and increases Resting Metabolic Rate. Overeating alone can increase caloric expenditure. Most people though consume far more calories than they burn even with the increased metabolic response. Although DIT is sometimes questioned in humans most experts agree that it accounts for 3-10% of daily energy expenditure.

The mechanism for DIT has two components which contribute to energy expenditure. Immediately after eating and for a period of several hours the body expends more energy to support the ingestion, digestion, and absorption of nutrients as well as transport of blood. This is the mechanical element of diet-induced thermogenesis. In addition, the body produces heat in brown adipose tissue (BAT) due to increased sympathetic nervous system activity. This process, though, is not completely understood.

BAT is a unique form of fat that is found in varying amounts throughout the mammalian genus. Bears, rodents and other hibernating animals that live in cold weather have an abundance of this specialized fat. Humans have small deposits throughout the body. BAT cells are smaller than normal storage cells, contain less fat, and are laden with mitochondria. These mitochondria hold a specialized uncoupling protein that uncouples the hydrogen atoms from the respiratory chain, producing heat but no ATP for work. The mechanism is based on a sympathetic response to cold. Norepinephrine is released from nerve endings in the BAT. In turn the uncoupling protein uncouples oxidative phosphorylation so ATP is not generated but heat is.

Brown adipose tissue is stimulated through two primary mechanisms, cold environment and food consumption. The cells respond to the changing temperature, which stimulate the production of heat. Unlike storage cells these adipocytes experience hyperplasia in response to the stimulus. This means they actually increase in number, as well as size.

Food consumption can activate this protein in brown adipose tissue in a similar manner. The magnitude of the DIT may depend on the number of calories consumed as well as the type of nutrient ingested. When a study on non-obese young males was performed the researchers found that calories ingested in two meals had a lower thermic response than the same number of calories eaten across four meals. The smaller meals required an additional caloric expenditure of over sixty calories above that expended for the two larger meals of the same caloric content. In addition, they found that carbohydrates have a greater thermic effect than fats and proteins have a greater effect than the carbohydrates. It is thought that the conversion of glucose to glycogen and the synthesis of body proteins that occurs after protein ingestion cause the increased metabolic demand.

Some foods contain products that stimulate metabolism without calories. Foods and beverages containing caffeine can elevate the body’s metabolism. This stimulant is found in chocolate, soda, and coffee. One cup of American coffee can increase metabolism by 3-4% for a short period of time. Likewise, spicy foods can have a similar effect. Capsaicin found in hot peppers has a pronounced thermic effect. Both caffeine and capsaicin stimulate the sympathetic nervous system to cause the enhanced metabolic activity.

Thermic activity can partially explain individuals that have the ability to consume
high amounts of food without gaining fat. Human infants are believed to maintain more BAT to aid in the maintenance of body. Again there is some question as to the amount and actual role BAT plays in adult humans but there is evidence that other uncoupling proteins exist in other tissues of the body.

UCP-1 is the uncoupling protein found in the BAT. Recently other uncoupling proteins have been found in fat storage cells, the brain and muscles. These proteins are called UCP-2 and UPC-3, respectively. This finding helps to explain how, even with minimal amounts of brown fat, people may be able to accelerate their metabolism to compensate for overeating. In obese individuals it is theorized that these uncoupling proteins are defective and fail to enhance metabolism with the consumption of food.

When laboratory rats are overfed they gain less weight than is expected based on the level of positive caloric balance. Scientists attribute this to activation of the sympathetic nervous system in BAT, causing an accelerated metabolism. The rodents have shown an increase in BAT in response to the overeating. Interestingly, some rats fail to increase BAT with the food consumption and become obese. Investigations using humans have been less definitive than the studies using animals, which may explain the uncoupling proteins found in other areas of the human body.

The problem with analyzing humans in the same manner we analyze animals is obvious. But, a study done in the early seventies gave scientists a more direct look at this phenomenon. The scientists used human cadavers ranging in age up to 80. The evidence suggests that humans have a similar response to the thermogenesis found in animals. The study showed that up until age 10 brown adipose tissue is widely distributed throughout the body. By the age of thirty though, most brown adipose tissue disappears from the body. The brown fat that remains well into old age mainly surrounds central organs, and is found in the chest cavity and neck.

In most studies performed on living humans the evidence fails to show high statistical significance. This is often due to the study methodology and procedures used. Many times the humans in the studies were not adequately measured, unequal food consumption was common, factors such as exercise, smoking and nutritional status all varied. These factors would all lead to inconclusive data collection. Almost all studies though, showed varying amounts of diet induced thermogenesis. With most people reaching peak DIT within four hours after eating and lean individuals peaking even earlier.

Weight gain was originally thought to be only a function of calories. This though is not the case. If it were we could adjust calories and easily predict an outcome. A study done on prisoners in a Vermont correctional facility did just that. Scientists modified the diets of the volunteers from the prison population based on their relative metabolisms. They found an initial increase in weight gain to be 21% of the expected based on the calories consumed. They were further astonished by the fact that as the trial went on the men had more difficulty gaining additional weight. Some actually lost weight. They found that to increase body weight to a greater degree they had to increase caloric intake well over 7000 kcal.

The study found a great variability in each individual’s ability to gain weight. Although the DIT was not measured the scientists concluded that the thermic affect of the food was a main contributor to this response. There are several theories as to the reasons for this phenomenon. The popular speculation being that human ancestors developed this defense against obesity when food consumption was high to maintain adequate nutrition from foods holding only trace amounts of essential nutrients.

Although the link between obesity and a defective thermic response have not been proven there is quite a bit of evidence that
points to this possibility. If there is a high variance in DIT in all humans due to the uncoupling proteins found throughout the body many of the variances in weight gain could be explained. This may also give more credibility to theories such as “Set-point” which uses predisposed genetic factors as the explanation for weight gain and difficulties with weight loss. Never-the-less, exercise and a calorie controlled healthy diet, low in fat and high in nutrient rich carbohydrates can help prevent the occurrence of obesity in most people.

Quiz

1. What is responsible for the contribution to energy expenditure from “Diet-induced thermogenesis”?
 A. Energy needed to support ingestion, digestion, absorption, and transport of blood
 B. Increased sympathetic nervous system activity
 C. Blockage to adipose tissue mobility
 D. A & B only
 E. All the above

2. What is TRUE of Brown Adipose Tissue?
 A. Contains less fat
 B. Maintain a high number of mitochondria
 C. Contain uncoupling proteins
 D. Produce heat without ATP
 E. All the above

3. What is an Uncoupling Protein?
 A. Protein that acts on oxidative phosphorylation
 B. Protein that can produce heat
 C. Protein located in the digestive organs
 D. A & B only
 E. All the above

4. BAT is found in abundance until what age?
 A. 6
 B. 10
 C. 18
 D. 24
 E. 30
5. What is the suspected link between DIT and obesity?
 A. Inadequate production of bile
 B. Thermogenic receptors in blood
 C. Defective thermic response
 D. Elevated levels of BAT

6. What are the primary mechanisms that stimulate BAT?
 A. Oxygen consumption
 B. Cold environment
 C. Food consumption
 D. A & C
 E. B & C

7. What low calorie food drastically increases thermic metabolism?
 A. Hot peppers
 B. Pretzel
 C. Coffee
 D. A & C
 E. All the above

8. When do most people reach peak DIT?
 A. During food consumption
 B. 30 minutes after eating
 C. 2 hours after eating
 D. 4 hours after eating

9. What nutrient has the greatest thermic effect?
 A. Fats
 B. Carbohydrates
 C. Minerals
 D. Proteins
 E. Vitamins

10. What difference, if any, are found by consuming few high calorie meals compared to multiple meal consumption when total daily calories are equal?
 A. Few high calorie meals have a greater thermic effect
 B. Multiple meal consumption has a greater thermic effect
 C. No difference is found
Quiz Answer Form

FIRST NAME________________________________LAST NAME________________________________M.I._______

TITLE__

ADDRESS___

ADDRESS___

CITY__STATE________________ZIP_____________________

COUNTRY________________________________POSTAL CODE____________________

CERTIFICATION NO. ____________________________CERTIFICATION EXP. ___/___/___

MEMBERSHIP NO. ______________________________MEMBERSHIP EXP. ___/___/___

<table>
<thead>
<tr>
<th>Quiz Name</th>
<th>Member Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$15</td>
<td></td>
</tr>
</tbody>
</table>

☐ Discover ☐ Visa ☐ Mastercard ☐ Amex ☐ Check/Money Order

Account No. ____________________________ Exp. Date ______________________ Security Code ____________

Signature ____________________________ Date ____________________________

Quiz Answers

1. _____ 6. _____
2. _____ 7. _____
3. _____ 8. _____
4. _____ 9. _____
5. _____ 10. _____

Fill in each blank with the correct choice on the answer sheet. To receive 0.5 CEUs, you must answer 8 of the 10 questions correctly.

Please mail this Quiz answer form along with the proper enclosed payment to:

NCSF
5915 Ponce de Leon Blvd., Suite 60
Coral Gables, FL 33146

Questions? 800-772-NCSF